Les Archées ou Archaea (anciennement archéobactéries ou bien encore archébactéries, du grec archaios, "ancien" et backterion, "bâton") forment un groupe de micro-organismes unicellulaires et sont un groupe majeur de procaryotes. Comme les bactéries, elles ne présentent donc ni de noyau, ni d'organites intracellulaires. Avant les travaux de phylogénie, les Archaea, qui étaient encore appelées archéobactéries, faisaient partie du règne des monères dans la classification à cinq Règnes du vivant. Les analyses plus détaillées ont montré que les archées étaient aussi différentes des Bactéries que celles-ci le sont des Eucaryotes : ces travaux aboutirent à la classification du vivant en trois domaines. Les Archaea ont été ultérieurement divisées en quatre phylum, dont les deux groupes des Crenarchaeota et des Euryarchaeota qui sont les plus étudiés.
Les Archaea sont extrêmement diversifiées. Certaines sont connues pour leur capacité à vivre dans des conditions extrêmes et occupent des niches écologiques qu'elles sont souvent seules à occuper (pH proche de 0, température supérieure à 100°C, salinité élevée par exemple), mais il existe beaucoup d'archées vivant dans des biotopes plus courants et très variés comme le sol, les lacs, la mer ou l'intestin des animaux. Elles contribueraient jusqu'à 20% du total de la biomasse. Ces procaryotes sont maintenant ainsi reconnus comme une part majeure du vivant sur Terre, ils peuvent jouer un rôle dans le cycle du carbone et le cycle de l'azote. Il n'y a pas d'exemple clairement reconnu d'archées pathogènes ou parasites, mais il existe des espèces mutualistes ou commensales. Par exemple, les archées méthanogènes du tractus intestinal de l'Homme et des ruminants participent à la digestion des aliments. Les archées ont également une importance en technologie, avec par exemple l'utilisation des méthanogènes pour produire des biogaz ou leur participation au traitement des eaux usées. Par ailleurs, les enzymes des archées extrémophiles, résistantes aux températures élevées et aux solvants organiques, sont exploitées en biotechnologie. CLASSIFICATION ACTUELLE Ces organismes ont longtemps été regroupés sous le terme générique de procaryotes, avec les bactéries. Pour les différencier, les microbiologistes avaient élaboré un système de comparaison et de classification fondé sur de petites différences visibles au microscope, ainsi que sur des différences physiologiques (capacité à se développer sur un certain milieu par exemple). Dès qu'il s'est agi d'élucider les relations généalogiques entre les différents procaryotes, les biologistes ont dû se rendre à l'évidence : les différences nutritionnelles et phénotypiques ne permettraient pas de classer correctement les différents organismes. Au cours des années 1970, les biologistes ont pris conscience de l'existence irremplaçable d'information, au cour même des cellules des êtres vivants, permettant de déterminer la phylogénie, l'ADN. Le gène identifié dans une cellule est le variant d'un gène qui a existé il y a de très nombreuses années. La comparaison gène à gène entre deux organismes permet donc de mesurer le temps écoulé depuis la divergence à partir de l'ancêtre commun. Carl Woese a réalisé que l'ARN ribosomique (ou ARNr, une des molécules contenues dans la cellule) des organismes qu'il étudiait permettait de mettre en évidence l'existence de deux groupes clairement séparés : les bactéries et les archéobactéries. En réalité, Woese s'est également rendu compte que les ARNr des archées étaient en fait aussi différents des ARNr des bactéries que de celui des eucaryotes. Il en a conclu qu'il ne fallait plus uniquement séparer en deux grands groupes le monde du vivant, en fonction de la présence ou de l'absence d'un noyau, mais plutôt en trois domaines primitifs : les bactéries, les archées et les eucaryotes. Aujourd'hui, de nombreuses études ont confirmé le caractère monophylétique de ce groupe. Ces micro-organismes ressemblent par leur forme aux bactéries, mais d'un point de vue moléculaire, si certains de leurs traits les rapprochent des bactéries, d'autres les rapprochent plutôt des eucaryotes. Il n'est donc pas possible de voir les archées comme étant des ancêtres des bactéries. Le classement des archées, et des procaryotes en général, est à la fois en évolution rapide et un domaine litigieux. Sur la base de critères uniquement métaboliques, les archées ont été divisées en quatre grands groupes : les archéobactéries méthanogènes, les archéobactéries halophiles, les archéobactéries thermophiles, les archéobactéries sulfo-dépendantes. ORIGINE ET ÉVOLUTION Bien que les fossiles connues de cellules procaryotes ont été datés de près de 3,5 milliards d'années, la plupart des procaryotes n'ont pas de morphologies distinctives et les formes des fossiles ne peuvent pas être utilisées pour les identifier comme étant des Archaea. Par contre, les fossiles chimiques, sous la forme des lipides caractéristiques des archées, donnent plus d'informations, car ces composés n'existent pas dans d'autres groupes d'organismes. Certaines publications ont suggéré que des lipides fossiles provenant de procaryotes ou d'eucaryotes étaient présents dans les schistes datant de 2,7 milliards d'années, ces données ont depuis toutefois été soumises à question. Ces lipides ont également été détectés dans les roches datant du précambrien. Les plus anciennes traces connues de ces lipides isopréniques proviennent des roches de la formation d'Isua à l'ouest du Groenland, qui comprennent des sédiments formés il y a 3,8 milliards d'années et qui sont les plus anciens sur Terre.
Les Archaea ont généralement un seul chromosome circulaire. Le plus grand génome archéen séquencé à ce jour est celui de Methanosarcina acetivorans (à g. ->) avec 5 751 492 paires de bases alors que le génome de Nanoarchaeum equitans (à d.), le plus petit séquencé à ce jour fait un dixième de cette taille avec seulement 490 885 paires de base. Il est estimé que le génome de Nanoarchaeum equitans comporte 537 gènes codant des protéines. Les éléments extrachromosomiques, appelés plasmides sont également présents dans archées. Ces plasmides peuvent être transférés entre les cellules par contact physique, dans un processus qui pourrait être similaire à la conjugaison bactérienne. REPRODUCTION La reproduction des archaea a lieu de manière asexuée par division binaire, par fission multiple ou par fragmentation. La méiose ne se produit pas, tous les descendants ont le même matériel génétique. Après la réplication de l'ADN les chromosomes sont séparés et la cellule se divise. Les détails du cycle cellulaire des archées ont fait l'objet de quelques études dans le genre Sulfolobus. Ce cycle a des caractères qui sont similaires à la fois des systèmes eucaryotes et bactériens. Selon les espèces d'archées, les chromosomes sont répliqués à partir de un ou plusieurs points de départ (origines de réplication) à l'aide d'ADN polymérases qui ressemblent aux enzymes équivalentes des eucaryotes. Toutefois, les protéines de la division cellulaire, tels que la protéine FtsZ, qui forme un anneau contractant autour de la cellule, et les composants de la cloison naissante dans le coeur de la cellule, sont similaires à leurs équivalents bactériens. S'il existe des spores chez les bactéries et les eucaryotes, elles n'ont jamais été mises en évidence dans toutes les archées connues. Certaines espèces de Haloarchaea peuvent subir des modifications phénotypiques et croître avec différents types de cellules, incluant des parois épaisses. Ces structures qui sont résistantes aux chocs osmotiques permettent aux archées à survivre dans l'eau à de faibles concentrations en sel, mais ce ne sont pas des structures de reproduction et elle ne peuvent aider à la dispersion dans de nouveaux habitats.
Caractéristiques cellulaires : Archaea vivant dans les geysers de Yellowstone. Métabolisme : D'un point de vue nutritionnel, elles se répartissent en de très nombreux groupes, depuis les chimiolithoautotrophes (tirant leur énergie de gradients chimiques d'origine non biologique) aux organotrophes. D'un point de vue physiologique, elles peuvent être aérobies, anaérobies facultatives ou strictement anaérobies. HABITAT Les archées existent dans une large diversité d'habitats, et sont une composante importante des écosystèmes de la planète. Elles peuvent contribuer jusqu'à 20 % de la biomasse totale sur la Terre. De nombreuses archées sont extrêmophiles, d'ailleurs, historiquement, les milieux extrêmes étaient considérés comme leurs niches écologiques. En effet, certaines archées survivent à des températures élevées, souvent supérieures à 100°C, que l'on rencontre dans les geysers, les fumeurs noirs, et des puits de pétrole. D'autres se trouvent dans des habitats très froids et d'autres en milieu très salé, acide, ou dans l'eau alcaline. Toutefois, d'autres espèces d'archées sont mésophiles et poussent dans des conditions beaucoup plus douce, dans les marais, les eaux usées, les océans et les sols. Les archées extrêmophiles sont membres des quatre principaux groupes physiologiques. Ce sont les halophiles, thermophiles, alcalophiles et acidophiles. Ces groupes n'ont pas de lien avec leur embranchement dans la classification phylogénétique. Néanmoins, ils sont un point de départ utile pour la classification. En écologie et plus généralement en sciences de la Terre, un cycle biogéochimique est le processus de transport et de transformation cyclique d'un élément ou composé chimique entre les grandes réservoirs que sont la géosphère, l'atmosphère, l'hydrosphère, dans lesquels se retrouve la biosphère. Un tel cycle induit souvent des passages de l'état organique à l'état minéral au sein de la biosphère. Récemment, plusieurs études ont montré que les archées existent non seulement dans les environnements mésophile et thermophile, mais sont également présentes, parfois en grand nombre, à basse température. Par exemple, les archées sont communes dans les environnements froids océaniques telles que les mers polaires. Les archaea sont en fait présentes en grand nombre dans tout les océans du monde dans la communauté planctonique (dans le cadre du picoplancton). Bien que ces archaea peuvent représenter jusqu'à 40 % de la biomasse microbienne, presque aucune de ces espèces n'ont été isolées et étudiées en culture pure. Par conséquent, notre compréhension du rôle des archées dans l'écologie des océans est rudimentaire, de sorte que leur influence sur les cycles biogéochimiques mondiaux reste largement inexploré. Certaines Crenarchaeota marines sont capables de nitrification, suggérant que ces organismes ont un rôle important dans le cycle de l'azote océanique, bien qu'elles peuvent également utiliser d'autres sources énergétique. Un grand nombre d'archées sont également présents dans les sédiments qui recouvrent le fond de la mer, et constitueraient la majorité des cellules vivantes à des profondeurs de plus de 1 mètre dans ces sédiments. Les archéobactéries méthanogènes (productrices de méthane) des marais sont responsables des gaz des marais (Poitevin par exemple). Beaucoup d'Archées méthanogènes sont rencontrées dans le tube digestif des ruminants (Methanomicrobium, Methanosarcina), des termites ou des humains. ARCHÉES ET SANTÉ HUMAINE Jusqu'à aujourd'hui, il n'y a pas de démonstration claire qu'il existe des archées pathogènes, bien que des relations aient été proposées entre la présence d'archées méthanogènes et de maladies parodontales. Bien qu'un grand nombre d'Archaea ne soient aujourd'hui pas cultivables en laboratoire, de nombreuses espèces peuvent être cultivées en utilisant des milieux de culture adaptés, et en reproduisant au mieux les conditions environnementales de leurs habitats naturels. COMPARAISON ENTRE ARCHAEA, BACTÉRIES ET EUCARYOTES Les Archaea sont similaires aux bactéries par beaucoup d'aspects de leur structure cellulaire et de leur métabolisme. Cependant, les mécanismes et les protéines impliquées dans les processus de réplication, de transcription et de traduction présentent des traits similaires à ceux rencontrés chez les eucaryotes. Les particularités des Archées par rapport aux deux autres domaines du vivant (Bactéries et Eucaryotes) sont les suivantes :
|